Pilot Geometry

In this course, students will build understanding of the following modules: Reasoning with Shapes, Establishing Congruence, Investigating Proportionality, Connecting Geometric and Algebraic Descriptions, and Making Informed Decisions.
Each module is broken up into topics where you will find teacher materials to guide the instruction and the student materials both used in the classroom for learning together and learning individually.
The agency developed these learning resources as a contingency option for school districts during COVID. All resources are optional. Prior to publication, materials go through a rigorous third-party review. Review criteria include TEKS alignment, support for all learners, progress monitoring, implementation supports, and more. Products also are subject to a focus group of Texas educators.
Pilot Algebra II

In this course, students will build understanding of the following modules: Exploring Patterns in Linear and Quadratic Relationships, Analyzing Structure, Developing Structural Similarities, Extending Beyond Polynomials, and Inverting Functions.
Each module is broken up into topics where you will find teacher materials to guide the instruction and the student materials both used in the classroom for learning together and learning individually.
The agency developed these learning resources as a contingency option for school districts during COVID. All resources are optional. Prior to publication, materials go through a rigorous third-party review. Review criteria include TEKS alignment, support for all learners, progress monitoring, implementation supports, and more. Products also are subject to a focus group of Texas educators.
Drawing Conclusions about Three-Dimensional Figures from Nets

Given a net for a three-dimensional figure, the student will make conjectures and draw conclusions about the three-dimensional figure formed by the given net.
Generalizing Geometric Properties of Ratios in Similar Figures

Students will investigate patterns to make conjectures about geometric relationships and apply the definition of similarity, in terms of a dilation, to identify similar figures and their proportional sides and congruent corresponding angles.
Determining Area: Sectors of Circles

Students will use proportional reasoning to develop formulas to determine the area of sectors of circles. Students will then solve problems involving the area of sectors of circles.
Making Conjectures About Circles and Segments

Given examples of circles and the lines that intersect them, the student will use explorations and concrete models to formulate and test conjectures about the properties and relationships among the resulting segments.
Determining Area: Regular Polygons and Circles

The student will apply the formula for the area of regular polygons to solve problems.
Making Conjectures About Circles and Angles

Given examples of circles and the lines that intersect them, the student will use explorations and concrete models to formulate and test conjectures about the properties of and relationships among the resulting angles.
Domain and Range: Numerical Representations

Given a function in the form of a table, mapping diagram, and/or set of ordered pairs, the student will identify the domain and range using set notation, interval notation, or a verbal description as appropriate.
Solving Problems With Similar Figures

Given problem situations involving similar figures, the student will use ratios to solve the problems.
Transformations of Square Root and Rational Functions

Given a square root function or a rational function, the student will determine the effect on the graph when f(x) is replaced by af(x), f(x) + d, f(bx), and f(x - c) for specific positive and negative values.
Transformations of Exponential and Logarithmic Functions

Given an exponential or logarithmic function, the student will describe the effects of parameter changes.
Solving Square Root Equations Using Tables and Graphs

Given a square root equation, the student will solve the equation using tables or graphs - connecting the two methods of solution.
Functions and their Inverses

Given a functional relationship in a variety of representations (table, graph, mapping diagram, equation, or verbal form), the student will determine the inverse of the function.
Rational Functions: Predicting the Effects of Parameter Changes

Given parameter changes for rational functions, students will be able to predict the resulting changes on important attributes of the function, including domain and range and asymptotic behavior.
Domain and Range: Graphs

Given a function in graph form, identify the domain and range using set notation, interval notation, or a verbal description as appropriate.
Domain and Range: Function Notation

Given a function in function notation form, identify the domain and range using set notation, interval notation, or a verbal description as appropriate.
Domain and Range: Verbal Description

The student will be able to identify and determine reasonable values for the domain and range from any given verbal description.
Domain and Range: Contextual Situations

The student will be able to identify and determine reasonable values for the domain and range from any given contextual situation.
Modeling Data with Linear Functions

Given a scatterplot where a linear function is the best fit, the student will interpret the slope and intercepts, determine an equation using two data points, identify the conditions under which the function is valid, and use the linear model to predict data points.