Transformations of Absolute Value Functions

Given an absolute value function, the student will analyze the effect on the graph when f(x) is replaced by af(x), f(bx), f(x – c), and f(x) + d for specific positive and negative real values.
Introduction to Logical Reasoning

This activity provides the opportunity to explore the validity of the converse, inverse, and contrapositive of statements. It also assists in recognizing the connections between biconditional statements and true conditional statements with a true converse.
Introduction to Probability

This activity provides the opportunity to explore the difference between finding the probability of independent events and dependent events. It also addresses how to use a tree diagram when calculating conditional probabilities.
Absolute Value Inequalities

This activity provides an opportunity for students to examine how to find solutions to an absolute value inequality.
Formulating and Solving Square Root Equations

This activity provides an opportunity for students to use a square root equation to model a situation and then use the model to make predictions.
Using Logical Reasoning to Prove Conjectures about Circles

Given conjectures about circles, the student will use deductive reasoning and counterexamples to prove or disprove the conjectures.
Creating Nets for Three-Dimensional Figures

Given nets for three-dimensional figures, the student will apply the formulas for the total and lateral surface area of three-dimensional figures to solve problems using appropriate units of measure.
Domain and Range: Graphs

Given a function in graph form, identify the domain and range using set notation, interval notation, or a verbal description as appropriate.
Domain and Range: Function Notation

Given a function in function notation form, identify the domain and range using set notation, interval notation, or a verbal description as appropriate.
Domain and Range: Verbal Description

The student will be able to identify and determine reasonable values for the domain and range from any given verbal description.
Domain and Range: Contextual Situations

The student will be able to identify and determine reasonable values for the domain and range from any given contextual situation.
Modeling Data with Linear Functions

Given a scatterplot where a linear function is the best fit, the student will interpret the slope and intercepts, determine an equation using two data points, identify the conditions under which the function is valid, and use the linear model to predict data points.
Formulating Systems of Inequalities

Given a contextual situation, the student will formulate a system of two linear inequalities with two unknowns to model the situation.
Solving Systems of Equations Using Substitution

Given a system of two equations where at least one of the equations is linear, the student will solve the system using the algebraic method of substitution.
Solving Systems of Equations Using Elimination

Given a system of two equations where at least one of the equations is linear, the student will solve the system using the algebraic method of elimination.
Solving Systems of Equations with Three Variables

Given a system of three linear equations, the student will solve the system with a unique solution.
Solving Systems of Equations Using Matrices

Given a system of up to three linear equations, the student will solve the system using matrices with technology.
Drawing Conclusions about Three-Dimensional Figures from Nets

Given a net for a three-dimensional figure, the student will make conjectures and draw conclusions about the three-dimensional figure formed by the given net.
Generalizing Geometric Properties of Ratios in Similar Figures

Students will investigate patterns to make conjectures about geometric relationships and apply the definition of similarity, in terms of a dilation, to identify similar figures and their proportional sides and congruent corresponding angles.
Determining Area: Sectors of Circles

Students will use proportional reasoning to develop formulas to determine the area of sectors of circles. Students will then solve problems involving the area of sectors of circles.