Home
Published on Texas Gateway (https://texascourses.org)
i

Website Maintenance Notice

We’re currently performing scheduled maintenance to update and improve our site. Some content may be temporarily unavailable as we retire legacy materials that no longer meet current standards. Thank you for your patience as we work to enhance your experience.
Section Summary

14.1 Heat

  • Heat and work are the two distinct methods of energy transfer.
  • Heat is energy transferred solely due to a temperature difference.
  • Any energy unit can be used for heat transfer, and the most common are kilocalorie (kcal) and joule (J).
  • Kilocalorie is defined to be the energy needed to change the temperature of 1.00 kg of water between 14.5 ºC14.5 ºC and 15.5 ºC15.5 ºC.
  • The mechanical equivalent of this heat transfer is 1.00 kcal=4186 J.1.00 kcal=4186 J.

14.2 Temperature Change and Heat Capacity

  • The transfer of heat QQ size 12{Q} {} that leads to a change ΔTΔT size 12{ΔT} {} in the temperature of a body with mass mm size 12{m} {} is Q=mcΔT,Q=mcΔT, size 12{Q= ital "mc"ΔT} {} where cc size 12{c} {} is the specific heat of the material. This relationship can also be considered as the definition of specific heat.

14.3 Phase Change and Latent Heat

  • Most substances can exist either in solid, liquid, and gas forms, which are referred to as phases.
  • Phase changes occur at fixed temperatures for a given substance at a given pressure, and these temperatures are called boiling and freezing—or melting—points.
  • During phase changes, heat absorbed or released is given by
    Q=mL,Q=mL, size 12{Q= ital "mL"} {}

    where LL size 12{L} {} is the latent heat coefficient.

14.4 Heat Transfer Methods

  • Heat is transferred by three different methods: conduction, convection, and radiation.

14.5 Conduction

  • Heat conduction is the transfer of heat between two objects in direct contact with each other.
  • The rate of heat transfer Q/tQ/t size 12{Q/t} {} (energy per unit time) is proportional to the temperature difference T2−T1T2−T1 size 12{T rSub { size 8{2} } - T rSub { size 8{1} } } {} and the contact area AA size 12{A} {} and inversely proportional to the distance dd size 12{d} {} between the objects
    Qt=kAT2−T1d.Qt=kAT2−T1d. size 12{ { {Q} over {t} } = { { ital "kA"` left (T rSub { size 8{2} } - T rSub { size 8{1} } right )} over {d} } } {}

14.6 Convection

  • Convection is heat transfer by the macroscopic movement of mass. Convection can be natural or forced and generally transfers thermal energy faster than conduction. Table 14.4 gives wind-chill factors, indicating that moving air has the same chilling effect of much colder stationary air. Convection that occurs along with a phase change can transfer energy from cold regions to warm ones.

14.7 Radiation

  • Radiation is the rate of heat transfer through the emission or absorption of electromagnetic waves.
  • The rate of heat transfer depends on the surface area and the fourth power of the absolute temperature
    Qt=σeAT4,Qt=σeAT4, size 12{ { {Q} over {t} } =σ`e`A`T rSup { size 8{4} } } {}

    where σ=5.67×10−8J/s⋅m2⋅K4σ=5.67×10−8J/s⋅m2⋅K4 is the Stefan-Boltzmann constant and ee size 12{e} {} is the emissivity of the body. For a black body, e=1e=1 whereas a shiny white or perfect reflector has e=0e=0, with real objects having values of ee between 1 and 0. The net rate of heat transfer by radiation is

    Q net t = σ e A T 2 4 − T 1 4 Q net t = σ e A T 2 4 − T 1 4 size 12{ { {Q rSub { size 8{"net"} } } over {t} } =σ`e`A` left (T rSub { size 8{2} } rSup { size 8{4} } - T rSub { size 8{1} } rSup { size 8{4} } right )} {}

    where T1T1 size 12{T rSub { size 8{1} } } {} is the temperature of an object surrounded by an environment with uniform temperature T2T2 size 12{T rSub { size 8{2} } } {} and ee size 12{e} {} is the emissivity of the object.