The Structure of the Nucleus
At this point, you are likely familiar with the neutron and proton, the two fundamental particles that make up the nucleus of an atom. Those two particles, collectively called nucleons, make up the small interior portion of the atom. Both particles have nearly the same mass, although the neutron is about two parts in 1,000 more massive. The mass of a proton is equivalent to 1,836 electrons, while the mass of a neutron is equivalent to that of 1,839 electrons. That said, each of the particles is significantly more massive than the electron.
When describing the mass of objects on the scale of nucleons and atoms, it is most reasonable to measure their mass in terms of atoms. The atomic mass unit (u) was originally defined so that a neutral carbon atom would have a mass of exactly 12 u. Given that protons and neutrons are approximately the same mass, that there are six protons and six neutrons in a carbon atom, and that the mass of an electron is minuscule in comparison, measuring this way allows for both protons and neutrons to have masses close to 1 u. Table 22.1 shows the mass of protons, neutrons, and electrons on the new scale.
Tips For Success
For most conceptual situations, the difference in mass between the proton and neutron is insubstantial. In fact, for calculations that require fewer than four significant digits, both the proton and neutron masses may be considered equivalent to one atomic mass unit. However, when determining the amount of energy released in a nuclear reaction, as in Figure 22.22, the difference in mass cannot be ignored.
Another other useful mass unit on the atomic scale is the . While rarely used in most contexts, it is convenient when one uses the equation , as will be addressed later in this text.
|
Proton Mass |
Neutron Mass |
Electron Mass |
Kilograms (kg) |
|
|
|
Atomic mass units (u) |
|
|
|
Table 22.1 Atomic Masses for Multiple Units
To more completely characterize nuclei, let us also consider two other important quantities: the atomic number and the mass number. The atomic number, Z, represents the number of protons within a nucleus. That value determines the elemental quality of each atom. Every carbon atom, for instance, has a Z value of 6, whereas every oxygen atom has a Z value of 8. For clarification, only oxygen atoms may have a Z value of 8. If the Z value is not 8, the atom cannot be oxygen.
The mass number, A, represents the total number of protons and neutrons, or nucleons, within an atom. For an ordinary carbon atom the mass number would be 12, as there are typically six neutrons accompanying the six protons within the atom. In the case of carbon, the mass would be exactly 12 u. For oxygen, with a mass number of 16, the atomic mass is 15.994915 u. Of course, the difference is minor and can be ignored for most scenarios. Again, because the mass of an electron is so small compared to the nucleons, the mass number and the atomic mass can be essentially equivalent. Figure 22.18 shows an example of Lithium-7, which has an atomic number of 3 and a mass number of 7.
How does the mass number help to differentiate one atom from another? If each atom of carbon has an atomic number of 6, then what is the value of including the mass number at all? The intent of the mass number is to differentiate between various isotopes of an atom. The term isotope refers to the variation of atoms based upon the number of neutrons within their nucleus. While it is most common for there to be six neutrons accompanying the six protons within a carbon atom, it is possible to find carbon atoms with seven neutrons or eight neutrons. Those carbon atoms are respectively referred to as carbon-13 and carbon-14 atoms, with their mass numbers being their primary distinction. The isotope distinction is an important one to make, as the number of neutrons within an atom can affect a number of its properties, not the least of which is nuclear stability.
To more easily identify various atoms, their atomic number and mass number are typically written in a form of representation called the nuclide. The nuclide form appears as follows:, where X is the atomic symbol and N represents the number of neutrons.
Let us look at a few examples of nuclides expressed in the notation. The nucleus of the simplest atom, hydrogen, is a single proton, or (the zero for no neutrons is often omitted). To check the symbol, refer to the periodic table—you see that the atomic number Z of hydrogen is 1. Since you are given that there are no neutrons, the mass number A is also 1. There is a scarce form of hydrogen found in nature called deuterium; its nucleus has one proton and one neutron and, hence, twice the mass of common hydrogen. The symbol for deuterium is, thus, . An even rarer—and radioactive—form of hydrogen is called tritium, since it has a single proton and two neutrons, and it is written . The three varieties of hydrogen have nearly identical chemistries, but the nuclei differ greatly in mass, stability, and other characteristics. Again, the different nuclei are referred to as isotopes of the same element.
There is some redundancy in the symbols A, X, Z, and N. If the element X is known, then Z can be found in a periodic table. If both A and X are known, then N can also be determined by first finding Z; then, N = A – Z. Thus the simpler notation for nuclides is
which is sufficient and is most commonly used. For example, in this simpler notation, the three isotopes of hydrogen are ,, and . For, should we need to know, we
can determine that Z = 92 for uranium from the periodic table, and thus, N = 238 − 92 = 146.